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What is an E-Nose?

� An artificial smelling device that identifies the 
specific components of an odor and analyzes 
its chemical makeup to identify it 



What Is It Made Of?

� Electronic Olfactory System: looks nothing like an 
actual nose but works similar to one

� Two main components
� Chemical Sensing System

1. Acts like receptors in our nasal passages
2. Odor-reactive sensor array

• Automated Pattern Recognition System
1. Acts like our brain
2. Artificial Neural Networks (ANN)



How Does An E- Nose Work?

� The sensor array generally consists of different 
polymer films, which are specially designed to conduct 
electricity. 

� When a substance is absorbed into these films, the 
films expand slightly, and that changes how much 
electricity they conduct. 

� Each electrode reacts to particular substances by 
changing its electrical resistance in a characteristic 
way. 



Baseline Resistance

All of the polymer films on a set of electrodes 
(sensors) start out at a measured resistance, their 
baseline resistance.  If there has been no change in 
the composition of the air, the films stay at the 
baseline resistance and the percent change is zero.

e- e- e- e- e- e-



The E-Nose Smells Something

Each polymer changes its size, and therefore its resistance, by a different 
amount, making a pattern of the change
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If a different compound had caused the air to change, the pattern of the 
polymer films' change would have been different:
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“Smell-Prints”

� Each chemical vapor presented to a sensor array 
produces a pattern characteristic of the vapor. 

� By presenting many different chemicals to the sensor 
array, a database of signatures is built up which is 
then used to train the pattern recognition system. 

� Combining the signals from all the electrodes gives a 
"smell-print" of the chemicals in the mixture that neural 
network software can learn to recognize.  



Artificial Neural Networks (ANN)

� An information processing system

� Collections of mathematical models
� Learning typically occurs by example –

through exposure to a set of input-output data 



Why use an ANN?

� Well suited to pattern recognition and 
forecasting. 
� Like people, learn by example. 
� Can configure, through a learning process, for 

specific applications, such as identifying a chemical 
vapor. 

� Capability not affected by subjective factors 
such as working conditions and emotional 
state. 



Global Markets

� Companies have taken the E-Nose  
technology and expanded to various markets:
� Cyrano Sciences (Pasadena, California)
� Neotronics (Essex, England)
� Alpha MOS (Toulouse, France)
� Bloodhound Sensors (Leeds, England)
� Aroma Scan (Manchester, England)
� Illumina (Cambridge, Massachusetts)
� Smart Nose (Zurich, Switzerland)



Applications: NASA

� NASA started the E-Nose 
Project to detect leaked 
ammonia onboard space 
station.

� Ammonia is just one of about 
40 - 50 compounds necessary 
on the space station which 
humans can't sense until 
concentrations become 
dangerously high.



Current Applications: 
Environmental Monitoring

� Environmental applications include:
� analysis of fuel mixtures
� detection of oil leaks
� testing ground water for odors
� identification of household odors
� identification of toxic wastes
� air quality monitoring
� monitoring factory emissions
� check for gas buildups in offshore oil rigs
� check if poisonous gases have collected down in 

sewers



Current Applications: 
Explosives Detection

� Detection of bombs, 
landmines, TNT, and 
other explosive 
devices.

• Specific Applications:
•Homeland Security
•Airport security
•Military
•Battlefields



Current Applications: 
Medical Diagnostics

� Detecting diseases and disorders by 
odor

� Relatively new technology
� Provides a non-invasive diagnostic tool
� Potential applications include:

• Detecting bacterial infections 
as well as type and severity of 
cancer, specifically lung cancer
• Diagnosing gastrointestinal 
disorders, diabetes, liver problems, 
and diseases such as Tuberculosis.



Current Applications: 
The Food Industry

� Assessment in food production
� Inspection of food quality
� Control of food cooking processes

� Specific applications include:
• Inspection of seafood products
• Grading whiskey
• Wine testing
• Inspection of cheese composition
• Monitoring fermentation process



Fermentation In Wine

� Fermentation in wine is the process where 
yeast convert sugar into carbon dioxide and 
ethyl alcohol.

� C6H12O6   --->  2CO2 + 2C2H5OH

� Three Stages of Wine Fermentation
� Primary or Aerobic Fermentation
� Secondary or Anaerobic Fermentation
� Malo-Lactic Fermentation (possible 3rd stage)



Primary or Aerobic Fermentation

� Typically lasts for the first 4-7 days

� On average, 70% of fermentation activity will 
occur during these first few days. 

� Carbon dioxide, produced by yeast, leaves the 
solution in the gaseous form, while the alcohol 
is retained in mix.

� Critical stage for yeast reproduction



Secondary or Anaerobic Fermentation

� Remaining 30% of fermentation activity will 
occur 

� Usually lasts anywhere from 2-3 weeks to a 
few months, depending on available nutrients 
and sugars.

� Should take place in a fermentation vessel 
fitted with an airlock to protect the wine from 
oxidation 



Malo-lactic Fermentation 
(Possible 3rd stage)

� A continuation of fermentation in the bottle is to 
be avoided 
� Can result in a buildup of carbon dioxide which can 

cause bottles to burst
� Often results in a semi carbonated wine that does not 

taste good.  
� If initiated pre-bottling, results in a softer tasting 

product
� Is often induced after secondary fermentation by 

inoculating with lactobacilli to convert malic acid to lactic 
acid

� Lactic acid has approximately half the acidity of malic
acid, resulting in a less acidic wine with a much cleaner, 
fresher flavor. 



Why Is It Important to Monitor the 
Fermentation Process in Wine?

� The wine industry needs to know the stage of 
their products in order to:
� Precisely induce Malo-lactic fermentation
� Add rock sugar and additional yeast needed to 

produce champagne and sparkling wines
� Bottle batches of champagne and sparkling wine
� Add additional nutrients and/or yeast enabling 

products 
� Add acidity to the wine



Design: Wi-Nose (Cross-section)

Installation Screw

Sample Intake

Tin Oxide Sensor

Pneumatic Pump

Sample Exhaust
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Water-proof 

Rubber Ring

Hex Nut

Wireless TransmitterMicroprocessor/RAM

Outside Cover



Design: Wi-Nose (Top View)

� Most of these units 
are to be installed in 
metal fermentation 
vats
� Reduce Rusting

� Rubber O-Rings

� Avoid Moister 
Contact

� Unique hemisphere 
design



Choice of Sensors: TGS 822

� High sensitivity to 
organic solvent vapors 
such as ethanol

� Is not responsive to 
carbon dioxide

� High stability and 
reliability over a long 
period (lifetime ≥ 5 
years, up to 200 ºC)

� Long life and low cost



Choice of Sensors: TGS 822

� Uses simple electrical current to produce a 
resistance output in response to a detectable 
gas’s concentration (ppm)



Choice of Sensors: TGS 2620

� Low power 
consumption

� High sensitivity to 
alcohol and organic 
solvent vapors

� Not responsive to 
carbon dioxide

� Long life and low cost
� Uses simple electrical 

circuit



Choice of Sensors: TGS 2620

� Comprised of a metal oxide 
semiconductor layer 
formed on alumina 
substrate

� Simple electrical circuit 
provides an output signal 
based on changes in 
conductivity that 
corresponds with gas 
concentration



Choice of Sensors: TGS 4160

� High selectivity for 
carbon dioxide

� Unresponsive to ethanol
� Compact size
� Long life
� Electomotive force is 

used to create a signal 
output that corresponds 
to a detectible gas’s 
concentration



Choice of Sensors: TGS 4160

� Ethanol exposure tests 
confirm that the sensors 
response is not affected by 
the presence of ethanol

� The zeolite filter is installed 
in the sensor cap and 
eliminates the influence of 
interference gases



Sensor Data

� Each sensor has a different output signal 
versus concentration relationship.
� Log-Log or Semi Log plots

� Graphs were reproduced in Microsoft excel by 
using the following methodology:
� Output = m*(Concentration)n-1 

� M and n were allowed to vary while the sum of the 
square of the difference of output and calculated 
output was minimized in the Excel Solver add in.



Sensor Data

� A typical reproduced output vs. concentration plot
TGS 822 Sensor
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Sensor Data

� These plots were then used to develop an Excel 
spreadsheet with data representing the output signal 
as a function of concentration.

� Based on a known experimental process (Camen
Pinheiro, Carla M. Rodrigues, Thomas Schafer, Joao 
G. Crespo) the vaporized concentration limits for 1st, 
2nd, and 3rd stage of fermentation were calculated.

� The data was then classified using these limits



Sensor Data

� A sample of the original Microsoft Excel spread sheet



NeuroSolutions for Excel 5

� NeuroSolutions 5 creates 
the most powerful and 
easy to use neural network 
simulation environment on 
the market today.

� Allows for the use of a 
neural network while 
working within a familiar 
spreadsheet environment



NeuroSolutions Problem Definition

� Trained a neural network to 
classify stages of fermentation
� 1st, 2nd, or 3rd.

� Data collected from 2458 
samples of data:
� 1741 1st Stage data
� 692 2nd Stage data
� 25 3rd Stage data

� Preprocess Data
� Randomize Row Function to 

randomize samples
� Tagged data columns as Input, 

Output, and rows as Training, 
Cross Validation, Testing



NeuroSolutions Problem Definition

� Excel sheet sample with input and output tags



Neural Network Training Results

� Trained network using 1000 
epochs

� Generated report 
summarizing training results:
� Plot showing learning curve of 

training and cross validation 
data

� Table with minimum and final 
mean-squared errors



Neural Network Training Results

� Examine learning curves 
to see if trained neural 
network did a good job of 
learning the data

� To verify conclusion, 
need to run a testing set 
through the trained 
neural network model



Neural Network Testing Classifiers

� Determine the classification performance of 
the “Training” data set

� Test classification performance of data that 
network has never seen
� This will tell us whether the neural network simply 

memorized the training data or truly learned the 
underlying relationship.



Training Data Classification Results

� Classification report generated
� Confusion matrix summarizes classification results in 

an easy to interpret format.
� Table lists various performance measures.

� Percentage of samples classified correctly for each class



Testing Data Classification Results

� True test of a network is how well it can classify 
samples that it has not seen before

� Another classification report generated with confusion 
matrix and table
� See if you have developed a good model for the data



Neural Network Multiple Training

� Unlike a linear system, a neural network is not 
guaranteed to find the global minimum.

� A neural network can actually arrive at different 
solutions for the same data given different values of 
the initial network weights.

� Thus, in order to develop a statistically sound neural 
network model, the network must be trained multiple 
times. 

� Networks were trained 3,4, and 5 times.
� 1000 epochs for each training run



Neural Network Multiple Training Results

� Graph gives average of 
multiple training runs along 
with standard deviation 
boundaries.

� 2 tables also generated
� Average of Minimum MSE’s

& Average of Final MSE’s
� Information about best 

network over all of the runs



Neural Network Multiple Training Results

� Graph is a plot of learning 
curves for each of the runs

� Goal is to try and find a 
neural network model for 
which multiple trainings 
approach the same final 
MSE



Varying Network Parameters

� Developed a training process to train a neural network 
multiple times while varying:
� Hidden layer processing elements
� Step size
� Momentum rate

� Develop an optimized neural network solution by 
varying any one of the network parameters to see 
which gives the best results



Varying Hidden Elements

� “Parameter Variation” training process to 
determine the optimum number of hidden 
processing elements for learning sensor data

� Number of hidden processing elements varied 
from 1 to 4.

� Each run for 1000 epochs and network run ‘n’
times for each parameter value
� ‘n’ = optimal training number previously found



Varying Hidden Elements Results

� Networks do not generally fully 
learn the problem with only 1 
processing element in the hidden 
layer.

� Increasing the number of hidden 
processing units to 2 results in 
significant improvement in minimum 
MSE.

� Further increasing the number of 
processing elements eventually 
results in final MSE converging to 
same general value.

� Usually the network with more 
processing elements tends to learn 
faster.



Testing the Optimal Network

� Use data set tagged as “Testing” to test 
performance of best network found

� Testing report and confusion matrix should 
have improved results in learning to classify 
fermentation stages.



Testing the Optimal Network Results



Run Parameter Results

� Table illustrating different runs/best run

� 5 different runs with varying training, cross-
validation, and testing percentages

� Best Run - #2



NeuroSolutions
Evaluation Mode Limitations

� Maximum of 300 exemplars
� Thus, we could use only 12% of all the data 

collected

� For more accurate results, require Full 
Version, so we can train, cross-validate, and 
test all samples

� Towards the end of the project, the full version 
without exemplar limitations was available. 
� Utilized ASCII text files instead of Excel
� The inputs and desired variables were the same.



Full Version Results

� 80% training (10% cross-validation) & 20% 
testing, 
� entire data set used to train and test neural network 

model 

� Results for stage 1 and 2 were quite accurate
� 100% classification - stage 1 
� 99% classification - stage 2

� However, the original problem still remained 
� all stage 3 data was classified as stage 2



Full Version Results

� As a final try, an “optimized” data set was used 
� All stage 3 data and portions of stage 1 and 2 that 

were at the stage boundaries

� This ended up giving the best results overall, 
with a 100% classification rate for all 3 stages. 

� The optimal neural network model had      
been found!



Justification of Neural Network

� Because gaseous carbon dioxide is produce in 
much greater quantities than gaseous ethanol
� Neural network allows for each to have a different 

weight in determining the classification.
� Neural network allows for the addition of more 

sensors, including sensors that can detect 
more than one gas

� Future work on this project will include
� Varying the number/type of sensors
� Weighting the concentration measurements of 

ethanol more that the concentration measurements 
of carbon dioxide



Customer Satisfaction –
Model Development

� Consumer satisfaction is based not only on 
demand but on the quality of the product.

� Consumer satisfaction, S, can be represented as 
follows:

� Where d1= demand for the WI – Nose
d2= demand for the competitor’s product
ρ = pre-determined factor = .76

( )ρρρ
1

21 ddS +=



Customer Satisfaction –
Model Development

� The maximum consumer satisfaction solution can 
therefore be defined as follows:

� Where p1 = price of the WI-Nose
p2 = price of the competitor’s device

� Suggests when prices of products are equal, demands 
will also be equal (not realistic)

� Therefore, model must be further developed to take 
into consideration the effect of product quality on 
demand

ρρ −− = 1
22

1
11 dpdp



Customer Satisfaction –
Model Development

� The following relationship is generated 
introducing two variables to account for this 
effect.

� The parameters α and β represent the 
inferiority function and the superiority function 
� Inferiority function = consumer’s knowledge for the 

product of interest.  
� Superiority function = consumer’s preference for the 

product of interest in comparison 
to the competitor’s product 

ρρ

β
α −−







= 1
22
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Customer Satisfaction –
Model Development

� The parameter Y represents the consumer’s budget 
and can be represented as follows:

� Consumer satisfaction should be maximized while still 
satisfying the consumer’s budget

2211 dpdpY +≤

( ) ρρ
1

1
11211 ddpYpdp −−=



Customer Satisfaction –
Model Development

� By satisfying these conditions, the following solution to the 
consumer satisfaction maximization can be derived as an 
implicit equation for d1

� Where β = H2/H1

� H1= consumer’s preference for the WI-Nose and 

� H2 = consumer’s preference for the competition’s product

� These can be calculated as follows:

� Where the wi’s are the weights associated with respective 
yi’s, or happiness functions
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Market Evaluation - Proposal

� Number of wineries in the U.S. = 4740
� Proposed Market: California

� Accounts for 90% of American wine production

� Relatively small number of wineries in 
California implies that information about 
Wi – Nose can and will be spread quickly.

� This implies that an α value of 1 will be 
reached within the first year.



Market Evaluation - Advertising

� We plan on accomplishing this by advertising
� www.WineBusiness.com

� Most highly trafficked website for the wine industry

� WineBusiness Monthly
� Industry’s Leading Publication for Wineries and Growers
� latest developments and trends in the global business of 

making wine, emphasis on new products

� Unified Wine and Grape Symposium (UWGS)
� Has become the largest wine and grape show in the 

nation



Consumer Satisfaction Model

� To calculate β, we need to calculate H1
and H2, the consumer preference for 
the WI-Nose and the competition's 
device.

� Three device design characteristics 
were allowed to vary
� Accuracy
� Size
� Weight



Consumer Satisfaction Model

� An informal survey was performed to 
determine optimal consumer satisfaction 
based on these three device characteristics

� This resulted in the following weights:

� Now, the happiness functions yi’s for the 
three design characteristics must be 
determined.

0.34Weight (pounds)

0.23Size (cc)

0.43Accuracy

WeightDesign Characteristic



Consumer Satisfaction Model
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Consumer Satisfaction Model
Accuracy of Device vs Accuracy of Device vs Accuracy of Device vs Accuracy of Device vs 
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Consumer Satisfaction Model
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Consumer Satisfaction Model
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Consumer Satisfaction Model
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Consumer Satisfaction Model
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Consumer Satisfaction Model

% Happiness vs Actual Device Weight
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Consumer Satisfaction Model
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Consumer Satisfaction Model

% Happiness vs Actual Device Weight
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Consumer Satisfaction Model
Competition – Cyranose 320

� Weight: ~ 2.5 lbs

� Dimensions: ~ 100 cc 
� Currently used in diverse industries including 

petrochemical, chemical, food, packaging, 
plastics, pet food and many more.
� Accuracy for wine fermentation stage  

classification: semi-accurate (75%)

� Cost: ~ $10,000



Consumer Satisfaction Model

0.3411Weight (lbs)

0.23028Size (cc)

0.7792210.60.770.4311Accuracy

BetaH2H1Weightsyi Our DeviceOur DeviceDevice Characteristic

� The happiness functions were then combined 
with the appropriate weights to calculate H1.

� H2 was calculated using the given 
characteristics for the Cyranose 320.

� The β value was then calculated.



Consumer Satisfaction Model

� This Beta value was used to determine 
demand for various product prices.

� This methodology was repeated for various 
values of the design characteristics to attain 
many different demands.

Price 1 ($/unit) Price 2 ($/unit) D1 B1-28,1

9000 10000 1215.83

8500 1341.86

8000 1480.93

7500 1634.94

7000 1806.44

H2 Alpha Rho Y

0.6 1 0.76 14500000



Consumer Satisfaction Integration

� Using these price-demand combinations, net present 
worth’s were attained.
� NPW 1 using Annual End-of-Year Cash Flows and 

Discounting
� NPW 2 with Continuous Cash Flows and Discounting

� Accounted for the size and weight that contributed to 
specific β’s by adjusting raw materials costs

� Ultimately graphed NPW vs. product price for each of 
the β’s.



Consumer Satisfaction Integration
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Consumer Satisfaction Integration
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The “Best” Product Design

� Beta 3 proved to be the 
most profitable
� Accuracy = 100%
� Size = 36 cc
� Weight = 1 pound

� Price = $8,000
� Demand = 1651 units
� Total Capital Investment 

(TCI) = $6.514 million
� Total Annual Value of 

Products = $13.21 million

� Total Annual Cost of Raw 
Materials = $2.07 million

� Return on Investment (ROI) 
= 49.2%

� Payback Period = 1.5 years
� Net Return = $2.22 million
� NPW 1 = $11.15 million
� NPW 2 = $11.97 million



The “Best” Product Design

� Generally, the optimal happiness product is 
not the most profitable due to costs associated 
with its desired characteristics.

� With our device the optimal happiness product 
is also the most profitable.
� The characteristics that were varied (size & weight) 

have very little costs associated with them (cover-
$2/unit, board-$1.50/unit, wiring- $2/unit).

� This is unlike other cases in which the product’s 
characteristics have much more significant costs 
associated with them.



Risk Analysis

� 20% variability in raw 
material costs for device

� Normal Distribution
� 10,000 iterations
� Monte Carlo Sampling Type
� Desired Output - ROI



Future Considerations/Work

� Get more 3rd stage data

� Vary number/type of sensors to get different 
values of accuracy

� See if a device can be designed that will give 
higher NPW but is not the “perfect” product
� Sensor and software costs more significant than 

size and weight costs



Questions, Comments, 
Concerns, Suggestions?


