Artificial Nose Technology: The WI -Nose

A Profitability and Market Analysis for the Development of Artificial Nose Technology to Monitor the Fermentation Process in Wine

Shawna M. Linehan Sarosh N. Nizami

What is an E-Nose?

 An artificial smelling device that identifies the specific components of an odor and analyzes its chemical makeup to identify it

MOSES Modular System using 20 sensors of 3 classes IPRONose 7 EC sensors at IIT.

CYRANOSE 32

MSI Vaporlab; hand-held SAW sensor array.

Applied Sensor 3300 E-nose.

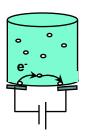
Cyranose320

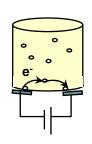
-handheld

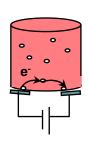
-32 sensors

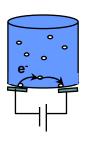
-polymer composite

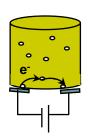
What Is It Made Of?

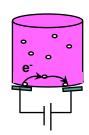

- Electronic Olfactory System: looks nothing like an actual nose but works similar to one
- Two main components
 - Chemical Sensing System
 - 1. Acts like receptors in our nasal passages
 - 2. Odor-reactive sensor array
 - Automated Pattern Recognition System
 - 1. Acts like our brain
 - 2. Artificial Neural Networks (ANN)

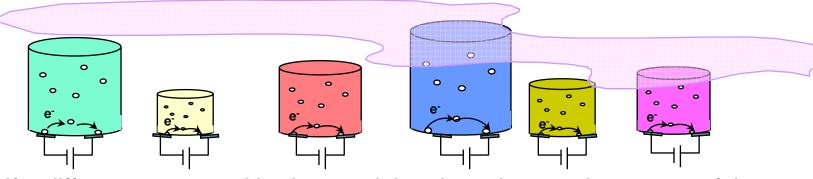

How Does An E- Nose Work?

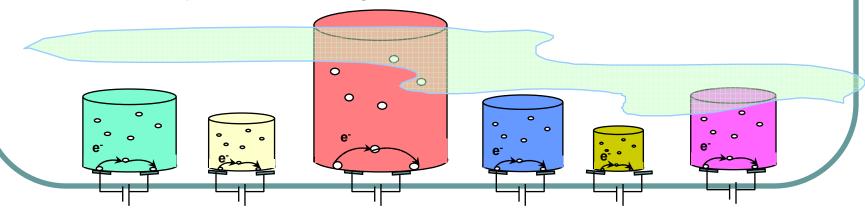

- The sensor array generally consists of different polymer films, which are specially designed to conduct electricity.
- When a substance is absorbed into these films, the films expand slightly, and that changes how much electricity they conduct.
- Each electrode reacts to particular substances by changing its electrical resistance in a characteristic way.


Baseline Resistance


All of the polymer films on a set of electrodes (sensors) start out at a measured resistance, their baseline resistance. If there has been no change in the composition of the air, the films stay at the baseline resistance and the percent change is zero.



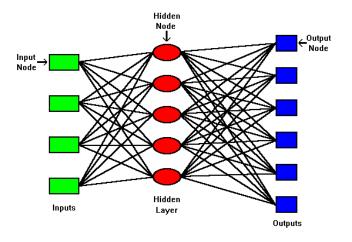




The E-Nose Smells Something

Each polymer changes its size, and therefore its resistance, by a different amount, making a pattern of the change

If a different compound had caused the air to change, the pattern of the polymer films' change would have been different:



"Smell-Prints"

- Each chemical vapor presented to a sensor array produces a pattern characteristic of the vapor.
- By presenting many different chemicals to the sensor array, a database of signatures is built up which is then used to train the pattern recognition system.
- Combining the signals from all the electrodes gives a "smell-print" of the chemicals in the mixture that neural network software can learn to recognize.

Artificial Neural Networks (ANN)

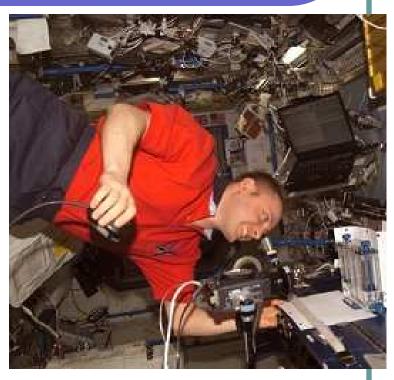
- An information processing system
- Collections of mathematical models
- Learning typically occurs by example through exposure to a set of input-output data

Why use an ANN?

- Well suited to pattern recognition and forecasting.
 - Like people, learn by example.
 - Can configure, through a learning process, for specific applications, such as identifying a chemical vapor.
- Capability not affected by subjective factors such as working conditions and emotional state.

Global Markets

Companies have taken the E-Nose
 technology and expanded to various markets:

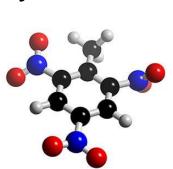

- Cyrano Sciences (Pasadena, California)
- Neotronics (Essex, England)
- Alpha MOS (Toulouse, France)
- Bloodhound Sensors (Leeds, England)
- Aroma Scan (Manchester, England)
- Illumina (Cambridge, Massachusetts)
- Smart Nose (Zurich, Switzerland)

Applications: NASA

- NASA started the E-Nose Project to detect leaked ammonia onboard space station.
- Ammonia is just one of about 40 - 50 compounds necessary on the space station which humans can't sense until concentrations become dangerously high.

Current Applications: Environmental Monitoring

- Environmental applications include:
 - analysis of fuel mixtures
 - detection of oil leaks
 - testing ground water for odors
 - identification of household odors
 - identification of toxic wastes
 - air quality monitoring
 - monitoring factory emissions
 - check for gas buildups in offshore oil rigs
 - check if poisonous gases have collected down in sewers

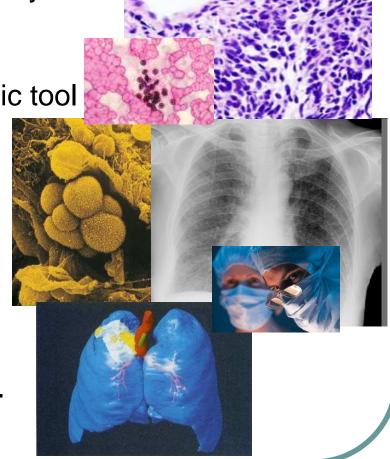


Current Applications: <u>Explosives Detection</u>

- Detection of bombs, landmines, TNT, and other explosive devices.
- Specific Applications:
 - Homeland Security
 - Airport security
 - Military
 - Battlefields

Current Applications: Medical Diagnostics

 Detecting diseases and disorders by odor


Relatively new technology

Provides a non-invasive diagnostic tool

Potential applications include:

Detecting bacterial infections as well as type and severity of cancer, specifically lung cancer

Diagnosing gastrointestinal disorders, diabetes, liver problems, and diseases such as Tuberculosis.

Current Applications: The Food Industry

- Assessment in food production
- Inspection of food quality
- Control of food cooking processes
- Specific applications include:
 - Inspection of seafood products
 - Grading whiskey
 - Wine testing
 - Inspection of cheese composition
 - Monitoring fermentation process

Fermentation In Wine

 Fermentation in wine is the process where yeast convert sugar into carbon dioxide and ethyl alcohol.

$$\circ$$
 C₆H₁₂O₆ ---> 2CO₂ + 2C₂H₅OH

- Three Stages of Wine Fermentation
 - Primary or Aerobic Fermentation
 - Secondary or Anaerobic Fermentation
 - Malo-Lactic Fermentation (possible 3rd stage)

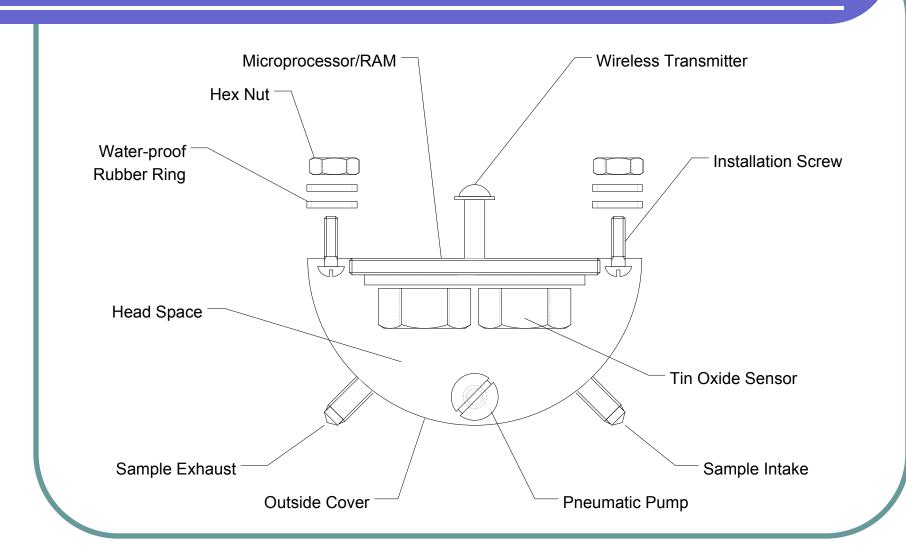
Primary or Aerobic Fermentation

- Typically lasts for the first 4-7 days
- On average, 70% of fermentation activity will occur during these first few days.
- Carbon dioxide, produced by yeast, leaves the solution in the gaseous form, while the alcohol is retained in mix.
- Critical stage for yeast reproduction

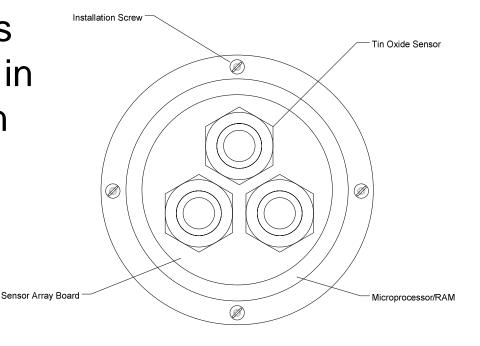
Secondary or Anaerobic Fermentation

- Remaining 30% of fermentation activity will occur
- Usually lasts anywhere from 2-3 weeks to a few months, depending on available nutrients and sugars.
- Should take place in a fermentation vessel fitted with an airlock to protect the wine from oxidation

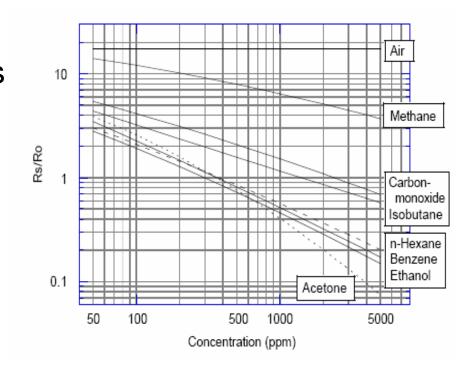
Malo-lactic Fermentation (Possible 3rd stage)


- A continuation of fermentation in the bottle is to be avoided
 - Can result in a buildup of carbon dioxide which can cause bottles to burst
 - Often results in a semi carbonated wine that does not taste good.
- If initiated pre-bottling, results in a softer tasting product
 - Is often induced after secondary fermentation by inoculating with lactobacilli to convert malic acid to lactic acid
 - Lactic acid has approximately half the acidity of malic acid, resulting in a less acidic wine with a much cleaner, fresher flavor.

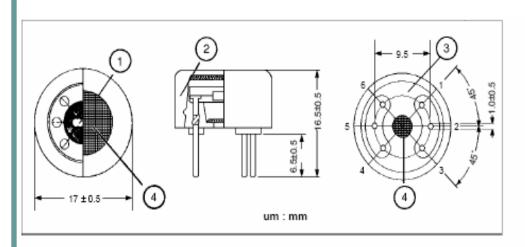
Why Is It Important to Monitor the Fermentation Process in Wine?


- The wine industry needs to know the stage of their products in order to:
 - Precisely induce Malo-lactic fermentation
 - Add rock sugar and additional yeast needed to produce champagne and sparkling wines
 - Bottle batches of champagne and sparkling wine
 - Add additional nutrients and/or yeast enabling products
 - Add acidity to the wine

Design: Wi-Nose (Cross-section)

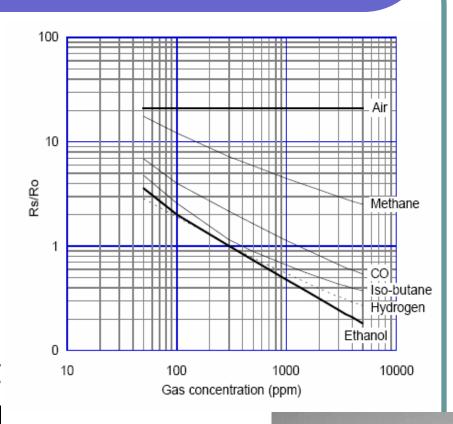


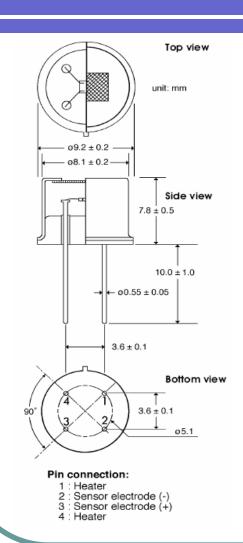
Design: Wi-Nose (Top View)


- Most of these units are to be installed in metal fermentation vats
 - Reduce Rusting
 - Rubber O-Rings
 - Avoid Moister Contact
 - Unique hemisphere design

- High sensitivity to organic solvent vapors such as ethanol
- Is not responsive to carbon dioxide
- High stability and reliability over a long period (lifetime ≥ 5 years, up to 200 °C)
- Long life and low cost

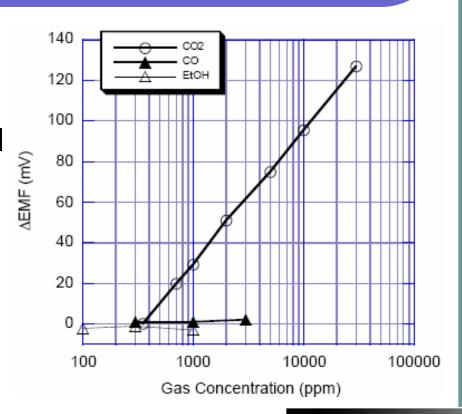
(1) Sensing Element:

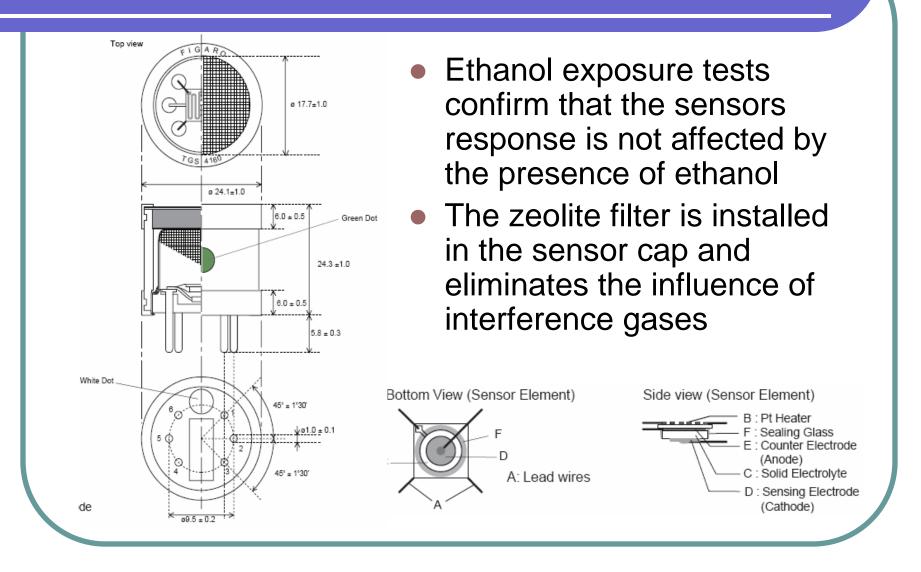

SnO₂ is sintered to form a thick film on the surface of an alumina ceramic tube which contains an internal heater.


- (**2**) Cap:
- Nylon 66
- (3) Sensor Base:
 - Nylon 66
- (4) Flame Arrestor:

100 mesh SUS 316 double gauze

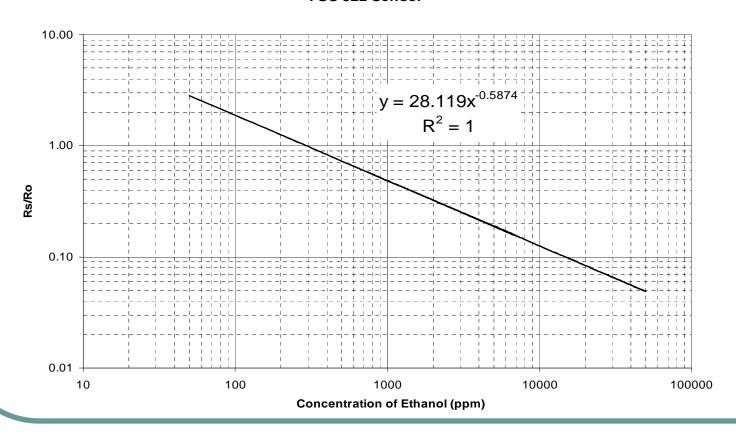
 Uses simple electrical current to produce a resistance output in response to a detectable gas's concentration (ppm)


- Low power consumption
- High sensitivity to alcohol and organic solvent vapors
- Not responsive to carbon dioxide
- Long life and low cost
- Uses simple electrical circuit



- Comprised of a metal oxide semiconductor layer formed on alumina substrate
- Simple electrical circuit provides an output signal based on changes in conductivity that corresponds with gas concentration

- High selectivity for carbon dioxide
- Unresponsive to ethanol
- Compact size
- Long life
- Electomotive force is used to create a signal output that corresponds to a detectible gas's concentration



- Each sensor has a different output signal versus concentration relationship.
 - Log-Log or Semi Log plots
- Graphs were reproduced in Microsoft excel by using the following methodology:
 - Output = m*(Concentration)ⁿ⁻¹
 - M and n were allowed to vary while the sum of the square of the difference of output and calculated output was minimized in the Excel Solver add in.

A typical reproduced output vs. concentration plot

TGS 822 Sensor

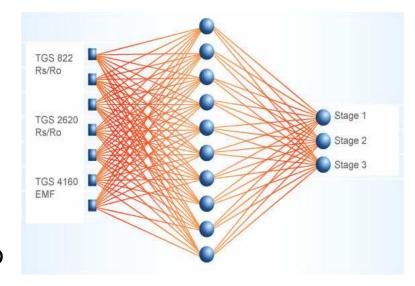
- These plots were then used to develop an Excel spreadsheet with data representing the output signal as a function of concentration.
- Based on a known experimental process (Camen Pinheiro, Carla M. Rodrigues, Thomas Schafer, Joao G. Crespo) the vaporized concentration limits for 1st, 2nd, and 3rd stage of fermentation were calculated.
- The data was then classified using these limits

A sample of the original Microsoft Excel spread sheet

	TGS 822		TGS 2620		TGS 4160	
TGS 822	Concentration	TGS 2620	Concentration	TGS 4160	Concentration	FERMENTATION
Rs/Ro	(ppm)	Rs/Ro	(ppm)	EMF (mV)	ppm	STAGE
0.16585	6244.00000	0.155831	6244	212.4276762	63531.37931	FIRST
0.16583	6245.00000	0.155815	6245	212.4114168	63567.81609	FIRST
0.16582	6246.00000	0.1558	6246	212.3951668	63604.25287	FIRST
0.1658	6247.00000	0.155784	6247	212.3789261	63640.68966	FIRST
0.16578	6248.00000	0.155769	6248	212.3626947	63677.12644	FIRST
0.16577	6249.00000	0.155754	6249	212.3464725	63713.56322	FIRST
0.16575	6250.00000	0.155738	6250	212.3302597	63750	FIRST
0.16574	6251.00000	0.155723	6251	212.0926114	64286.48844	SECOND
0.16572	6252.00000	0.155707	6252	211.8569381	64822.97688	SECOND
0.16571	6253.00000	0.155692	6253	211.6232072	65359.46532	SECOND
0.16569	6254.00000	0.155676	6254	211.3913871	65895.95376	SECOND
0.16568	6255.00000	0.155661	6255	211.1614467	66432.4422	SECOND
0.16566	6256.00000	0.155645	6256	210.9333558	66968.93064	SECOND
0.16564	6257.00000	0.15563	6257	210.7070848	67505.41908	SECOND

NeuroSolutions for Excel 5

- NeuroSolutions 5 creates the most powerful and easy to use neural network simulation environment on the market today.
- Allows for the use of a neural network while working within a familiar spreadsheet environment



NeuroSolutions Problem Definition

 Trained a neural network to classify stages of fermentation

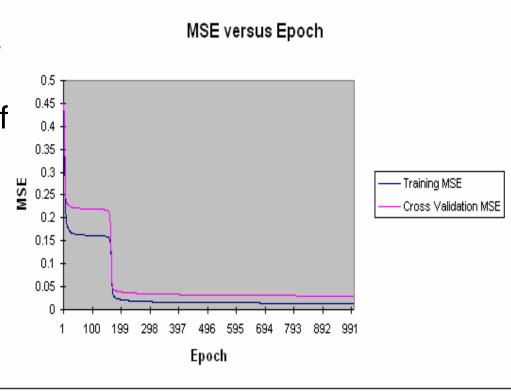
• 1st, 2nd, or 3rd.

- Data collected from 2458 samples of data:
 - 1741 1st Stage data
 - 692 2nd Stage data
 - 25 3rd Stage data
- Preprocess Data
 - Randomize Row Function to randomize samples
- Tagged data columns as Input, Output, and rows as Training, Cross Validation, Testing

NeuroSolutions Problem Definition

Excel sheet sample with input and output tags

					•				•			
Sample	RI	et	P2	a	pa	Ferment C3 ation	Stage 1	Singe 2 Sing		R1 / C1	H2 / C2	R3 / C3
2318	0.157375	6827	0.147437	6827	162,2097	373303.8 SECOND	0	1	0	TGS 822	TGS 2620	
239		2480		2480		9021.954 FIRST		0	0			
1278		5787		5787		46879.77 FIRST		0	0			
221		2300		2300		8366.092 FIRST		0	0			
1737		6246		6246		63604.25 FIRST		0	0			
2290		6799	0.147814	6799		358282.2 SECOND	0		0			
2445		37000		37000		441437.9 THIRD	0	0	1			
1970		6479		6479		186605.9 SECOND	0		0			
2013		6522		6522		209674.9 SECOND	0		0			
1958		6467		6467		180168 SECOND	0		0			
1006		5515		5515		36968.97 FIRST		0	0			
1622		6131		6131		59414.02 FIRST		0	0			
2146		6655		6655		281027.8 SECOND	0		0			
1187		5696		5696		43564.02 FIRST		0	0			
134		1430		1430		5196.092 FIRST		0	0			
2120		6629		6629		267079.1 SECOND	0		0			
1522		6031		6031		55770.34 FIRST		0	0			
211		2200		2200		8001.724 FIRST		0	0			
1770		6279		6279		79308.16 SECOND	0		0			
958		5467		5467		35220 FIRST		0	0			
1818		6327		6327		105059.6 SECOND	0		0			
1012		5521		5521		37187.59 FIRST		0	0			
1201		5710		5710		44074.14 FIRST		0	0			
1257		5766		5766		46114.6 FIRST		0	0			
98		1070		1070		3884.368 FIRST		0	0			
1291		5800		5800		47353.45 FIRST		0	0			
609		5118		5118		22503.56 FIRST		0	0			
909		5418		5418		33434.6 FIRST		0	0			
1811		6320		6320		101304.2 SECOND	0		0			
2324		6833		6833		376522.8 SECOND	0		0			


Neural Network Training Results

- Trained network using 1000 epochs
- Generated report summarizing training results:
 - Plot showing learning curve of training and cross validation data
 - Table with minimum and final mean-squared errors

	Cross
Training	Validation
MSE	MST///
0.43410369	0.44981748
0.340294	0.44223499
0.33280918	0.42945878
0.32267846	0.40656058
0.30733597	0.36021234
0.2787291	0.30898905
0.25573399	0.27647618
0.2279212	0.26232052
0.21351986	0.24691495
0.20126831	0.23870294
0.19461823	0.23526743
0.18960026	0.23345988
0.18549146	0.23249844
0.18321123	0.23088157
0.18100021	0.22958992
0.17932922	0.22886859
0.17807501	0.22835228
0.17679957	0.22799805
0.17564384	0.22763973
0.17452552	0.22717646
0.1733015	0.22671047
0.17203555	0.22629662
0.17081494	0.22591041
0.16972628	0.2255373
0.1688617	0.22516113
0.16821932	0.2247676
0.16772743	0.22437058
0.16733089	0.22399581
0.16700198	0.2236585
0.16672238	0.22336425

Neural Network Training Results

- Examine learning curves to see if trained neural network did a good job of learning the data
- To verify conclusion, need to run a testing set through the trained neural network model

Best Networks	Training	Cross Validation
Epoch #	1000	1000
Minimum MSE	0.013864389	0.029511521
Final MSE	0.013864389	0.029511521

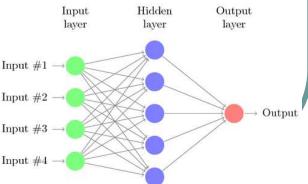
Neural Network Testing Classifiers

- Determine the classification performance of the "Training" data set
- Test classification performance of data that network has never seen
 - This will tell us whether the neural network simply memorized the training data or truly learned the underlying relationship.

Training Data Classification Results

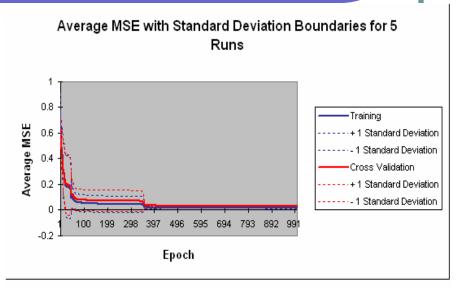
- Classification report generated
- Confusion matrix summarizes classification results in an easy to interpret format.
- Table lists various performance measures.
 - Percentage of samples classified correctly for each class

	52	92				Statie /	Statien		Output Symbolic		
0.17444713	0.16437732	222.355111	Ulininisialillu 1	(::::::::::::::::::::::::::::::::::	<i> iiii:\iiii </i> -	1.01618618	-0.0219309	-0.0004503 S	Stage 1		
0.16400239	0.15400168	193.256052	0	1	0	0.00263022	0.99366977	-0.0047552 S	Stage 2		
0.45030135	0.44746936	289.872722	1	0	0	1.05540843	-0.0555258	-0.0209847 S	Stage 1		
0.16617488	0.15615682	212.771294	1	0	0	0.81697629	0.18717517	-0.0057397 S	Stage 1		
0.3477586	0.34060275	277.36157	1	0	0	1.05538075	-0.055508	-0.0133749 S	Stage 1		
0.1641843	0.15418207	194.756638	0	1	0	0.02093752	0.97624006	Output / Desire		Stage 2	Stage 3
0.18539579	0.17529099	239.779437	1	0	0	1.05361962	-0.0542112	Stage 1 Stage 2	134 0	44	0
0.16583079	0.15581537	212.411417	1	0	0	0.80224309		Stage 3	 	0	Ö
0.17405485	0.163987	221.851812	1	0	0	1.01213263	-0.0181152				
0.17520269	0.16512926	223.341489	1	0	0	1.02304447	-0.0282908				
0.20129142	0.19119972	250.925538	1	0	0	1.05501702	-0.0552216	Performance	Stage 1	Stage 2	Stage 3
0.18006565	0.16997323	230.324516	1	0	0	1.04670594	-0.0489073	MSE NMSE	0.007348178		0.004951796 0.89630269
0.16771535	0.15768595	214.414855	1	0	0	0.87620098	0.12235204		0.055570194		0.01696378
0.16033242	0.15036465	172.572865	0	1	0	-0.0530539	1.05050438	Min Abs Error	0.000225056		2.0753E-05
0.1576465	0.14770579	163.036695	0	1	0	-0.0546353	1.05280952		0.73125206	1.054121039	0.897267385
						'		Percent Correct	0.982389226 100	0.967126613 97.7777778	0.323188199 0


Testing Data Classification Results

- True test of a network is how well it can classify samples that it has not seen before
- Another classification report generated with confusion matrix and table
 - See if you have developed a good model for the data

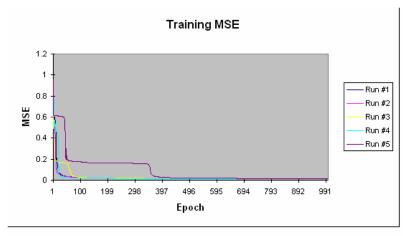
RS 82	R23	Stage 1	Stage 2	Stage 3	Statie 1 Output	Stage 2 Output	Stage 3 Output (Output Symbolic)		
0.17444713 0.16437732	222.355111	1	0	0	1.01618618	-0.0219309				
0.16400239 0.15400168	193.256052	0	1	0	0.00263022	0.99366977	-0.0047552 S	tage 2		
0.45030135 0.44746936	289.872722	1	0	0	1.05540843	-0.0555258	-0.0209847 S	tage 1		
0.16617488 0.15615682	212.771294	1	0	0	0.81697629	0.18717517	-0.0057397 S	tage 1		
0.3477586 0.34060275	277.36157	1	0	0	1.05538075	-0.055508	Output / Desired	d Stage 1	Stage 2	Stage 3
0.1641843 0.15418207	194.756638	0	1	0	0.02093752	0.97624006	Stage 1	50	2	0
0.18539579 0.17529099	239.779437	1	0	0	1.05361962	-0.0542112	Stage 2 Stage 3	0	22	0
0.16583079 0.15581537	212.411417	1	0	0	0.80224309		Stage 5			Ů
0.17405485 0.163987	221.851812	1	0	0	1.01213263	-0.0181152				
0.17520269 0.16512926	223.341489	1	0	0	1.02304447	-0.0282908	Performance MSE	Stage 1 0.01544821	Stage 2 1 0.015027416	Stage 3 0.000767293
0.20129142 0.19119972	250.925538	1	0	0	1.05501702	-0.0552216	NMSE	0.07049533		#DIV/D!
0.18006565 0.16997323	230.324516	1	0	0	1.04670594	-0.0489073	MAE	0.06450695		0.015647248
0.16771535 0.15768595	214.414855	1	0	0	0.87620098	11 11 12 124 11 11	Min Abs Error Max Abs Error	0.003877229		0.000332898 0.097046681
							INIOX COS EIIOI	0.96786176		#DIV/0!
							Percent Correct	100	91.66666667	#N/A

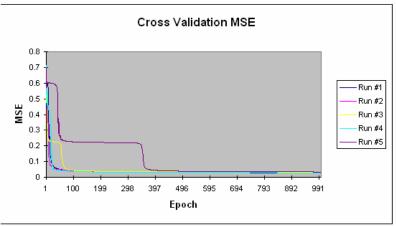

Neural Network Multiple Training

- Unlike a linear system, a neural network is not guaranteed to find the global minimum.
- A neural network can actually arrive at different solutions for the same data given different values of the initial network weights.
- Thus, in order to develop a statistically sound neural network model, the network must be trained multiple times.
- Networks were trained 3,4, and 5 times.
- 1000 epochs for each training run

Neural Network Multiple Training Result

- Graph gives average of multiple training runs along with standard deviation boundaries.
- 2 tables also generated
 - Average of Minimum MSE's
 & Average of Final MSE's
 - Information about best network over all of the runs




All Runs	Training Minimum	Training Standard Deviation	Cross Validation Minimum	Cross Validation Standard Deviation
Average of Minimum MSEs	0.014580204	0.000759845	0.030901978	0.002563347
Average of Final MSEs	0.014580204	0.000759845	0.030901978	0.002563347

Best Networks	Training	Cross Validation	
Run #	4	1	•
Epoch #	1000	1000	٦
Minimum MSE	0.013835231	0.028684369	1
Final MSE	0.013835231	0.028684369	٦

Neural Network Multiple Training Result

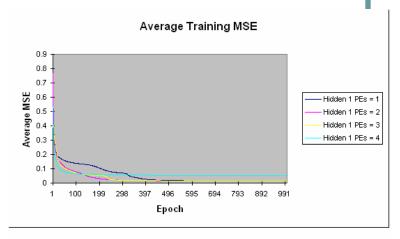
- Graph is a plot of learning curves for each of the runs
- Goal is to try and find a neural network model for which multiple trainings approach the same final MSE

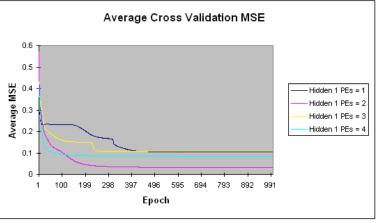
Varying Network Parameters

- Developed a training process to train a neural network multiple times while varying:
 - Hidden layer processing elements
 - Step size
 - Momentum rate
- Develop an optimized neural network solution by varying any one of the network parameters to see which gives the best results

Output Layer

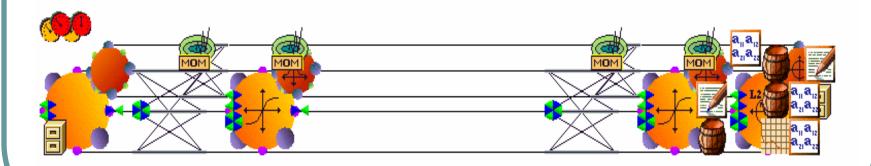
Hidden Layer


Input Laver


Varying Hidden Elements

- "Parameter Variation" training process to determine the optimum number of hidden processing elements for learning sensor data
- Number of hidden processing elements varied from 1 to 4.
- Each run for 1000 epochs and network run 'n' times for each parameter value
 - 'n' = optimal training number previously found

Varying Hidden Elements Results


- Networks do not generally fully learn the problem with only 1 processing element in the hidden layer.
- Increasing the number of hidden processing units to 2 results in significant improvement in minimum MSE.
- Further increasing the number of processing elements eventually results in final MSE converging to same general value.
- Usually the network with more processing elements tends to learn faster.

Testing the Optimal Network

- Use data set tagged as "Testing" to test performance of best network found
- Testing report and confusion matrix should have improved results in learning to classify fermentation stages.

Testing the Optimal Network Results

R1 R2	R3	Stage 1	Stage 2	Stage 3	Stage 1 Output	Stage 2 Output	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3 Guipui ut (Symbol		
0.15945615 0.14949694	169.146946	0	1			1.03787958		876 Stage 2		
0.22480933 0.21486511	256.265662	1	0	0	1.05312184	-0.0532125		2688 Stage 1		
0.17072968 0.16068037	217.801637	1	0	0	0.94758824	0.04419747	-0.0008	302 Stage 1		
0.16086159 0.15088878	174.833769	0	1	0	-0.0439408	1.03350547	0.0297	924 Stage 2		
0.22552228 0.21558478	256.418698	1	0	0	1.05313476	-0.0532279	-0.0026	791 Stage 1		
0.15624873 0.14632311	158.97768	0	1	0	-0.0508077	1.04254958	0.06819	225 Stage 2		
0.17368263 0.16361667	221.379582	1	0	0	0.99530406	-0.0022267	-0.0008	765 Stage 1		
0.15935803 0.14939979	168.784921	0	1	0	-0.0478795	1.03809848	0.04272	011 Stage 2		
0.20050563 0.19041158	250.736529	1	0	0	1.05252714	-0.0525384	-0.0028	3445 Stage 1		
0.17401931 0.16395163	221.806497	1	0	0	0.99926153	-0.0059199	-0.0008	575 Stage 1		
0.18680154 0.1766949	242.745424	1	0	0	1.05066757	-0.0508165	-0.0022	984 Stage 1		
0.54644789 0.54893286	299.25453	1	0	0	1.05432032	-0.055003	0.009	855 Stage 1		
0.15889765 0.14894402	167.13785	0	1	0	-0.0485792	1.0390298	0.04660)268 Stage 2		
0.17648185 0.16640271	225.065752	1	0	0	1.02140057	-0.0259995	-0.0008	079 Stage 1		
0.18682306 0.1767164	242.792837	1	0	0	1.05068489	-0.0508313	-0.0023	039 Stage 1		
0.15783725 0.14789454	163.63031	0	1	0	-0.0497417	1.04072617	0.05539	9535 Stage 2		
0.16969211 0.15964931	216.608336	1	0	0	0.92413417					
0.1727701 0.16270899	220.243017	1	0	0	0.9832017	Output / Desir	ed	Stage 1	Stage 2	Stage 3
0.18057418 0.17048021	231.130719	1	0	0	1.04046442	Stage 1		50	2	0
0.41876567 0.41444211	286.355834	1	0	0	1.05419868	Stage 2		0	22	0
0.16807013 0.15803823	214.801257	1	0	0	0.8791531{	Stage 3		0	0	0
0.16750665 0.15747874	214.188978	1	0	0	0.86101400				•	•
0.1723706 0.16231169		1	0	0	0.97721520					
0.25761638 0.24810795	262.850262	1	0	0	1.05356218	Performance		Stage 1	Stage 2	Stage 3
0.15666186 0.14673171	160.127996	0	1	U	-0.0505824	MSE	•	0.015628101	0.015000623	0.000585812
0.18346267 0.17336135	236.065415	1	0	0	1.04681116	NMSE	_	0.071316233	0.068452844	#DIV/0!
0.17769251 0.16760843	226.76653	1	0	0	1.0288214	MΔE	_	0.062833451	0.060256236	0.012355805
0.16975854 0.15971531	216.683826	1	0	0	0.92575510	Min Abs Error	_	0.000738466	0.002226664	0.000184181
						Max Abs Error	_	0.702854507	0.693608444	0.070025657
						r		0.966287274	0.967849116	#DIV/0!
						Percent Correc	et 🍍	100	91.66666667	#N/A

Run Parameter Results

Run#	Training	Cross-Validation	Testing	Optimal Runs	Optimal Processing Elements	Stage 1 Accuracy (%)	Stage 2 Accuracy (%)	Stage 3 Accuracy (%)
1	0.6	0.15	0.25	5	3	100	91.67	N/A
2	0.7	0.1	0.2	3	4	100	100	N/A
3	0.5	0.1	0.4	4	3	100	97.4	0
4	0.6	0.1	0.3	4	4	100	92	0
5	0.8	0.1	0.1	5	3	100	100	N/A

- Table illustrating different runs/best run
- 5 different runs with varying training, crossvalidation, and testing percentages
- Best Run #2

NeuroSolutions Evaluation Mode Limitations

- Maximum of 300 exemplars
 - Thus, we could use only 12% of all the data collected
- For more accurate results, require Full Version, so we can train, cross-validate, and test all samples
- Towards the end of the project, the full version without exemplar limitations was available.
 - Utilized ASCII text files instead of Excel
 - The inputs and desired variables were the same.

Full Version Results

- 80% training (10% cross-validation) & 20% testing,
 - entire data set used to train and test neural network model
- Results for stage 1 and 2 were quite accurate
 - 100% classification stage 1
 - 99% classification stage 2
- However, the original problem still remained
 - all stage 3 data was classified as stage 2

Full Version Results

- As a final try, an "optimized" data set was used
 - All stage 3 data and portions of stage 1 and 2 that were at the stage boundaries
- This ended up giving the best results overall, with a 100% classification rate for all 3 stages.
- The optimal neural network model had been found!

Justification of Neural Network

- Because gaseous carbon dioxide is produce in much greater quantities than gaseous ethanol
 - Neural network allows for each to have a different weight in determining the classification.
- Neural network allows for the addition of more sensors, including sensors that can detect more than one gas
- Future work on this project will include
 - Varying the number/type of sensors
 - Weighting the concentration measurements of ethanol more that the concentration measurements of carbon dioxide

- Consumer satisfaction is based not only on demand but on the quality of the product.
- Consumer satisfaction, S, can be represented as follows:

$$S = \left(d_1^{\rho} + d_2^{\rho}\right)^{\frac{1}{\rho}}$$

Where d₁= demand for the WI – Nose
 d₂= demand for the competitor's product
 ρ = pre-determined factor = .76

 The maximum consumer satisfaction solution can therefore be defined as follows:

$$p_1 d_1^{1-\rho} = p_2 d_2^{1-\rho}$$

- Where p_1 = price of the WI-Nose p_2 = price of the competitor's device
- Suggests when prices of products are equal, demands will also be equal (not realistic)
- Therefore, model must be further developed to take into consideration the effect of product quality on demand

- The following relationship is generated introducing two variables to account for this effect. $p_1d_1^{1-\rho} = \left(\frac{\alpha}{\beta}\right)p_2d_2^{1-\rho}$
- The parameters α and β represent the inferiority function and the superiority function
 - Inferiority function = consumer's knowledge for the product of interest.
 - Superiority function = consumer's preference for the product of interest in comparison to the competitor's product

 The parameter Y represents the consumer's budget and can be represented as follows:

$$Y \le p_1 d_1 + p_2 d_2$$

 Consumer satisfaction should be maximized while still satisfying the consumer's budget

$$p_1 d_1 = p_2 (Y - p_1 d_1)^{1-\rho} d_1^{\rho}$$

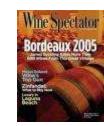
• By satisfying these conditions, the following solution to the consumer satisfaction maximization can be derived as an implicit equation for d_1

$$\Phi(d_1) = p_1 d_1 - \left(\frac{\alpha}{\beta}\right)^{\rho} p_2 \left[\frac{Y - p_1 d_1}{p_2}\right]^{1 - \rho} d_1^{\rho} = 0$$

- Where $\beta = H_2/H_1$
 - H₁= consumer's preference for the WI-Nose and
 - H₂ = consumer's preference for the competition's product
- These can be calculated as follows: $H_i = \sum w_i y_i$
- Where the w_i's are the weights associated with respective y_i's, or happiness functions

Market Evaluation - Proposal

- Number of wineries in the U.S. = 4740
- Proposed Market: California
 - Accounts for 90% of American wine production
- Relatively small number of wineries in California implies that information about Wi – Nose can and will be spread quickly.
- This implies that an α value of 1 will be reached within the first year.



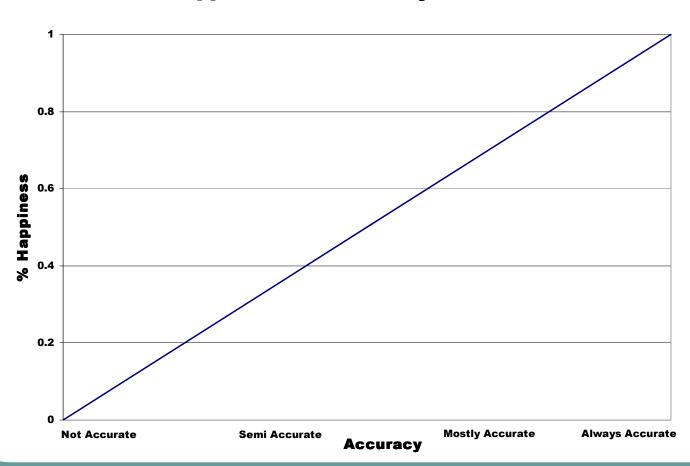
Market Evaluation - Advertising

We plan on accomplishing this by advertising

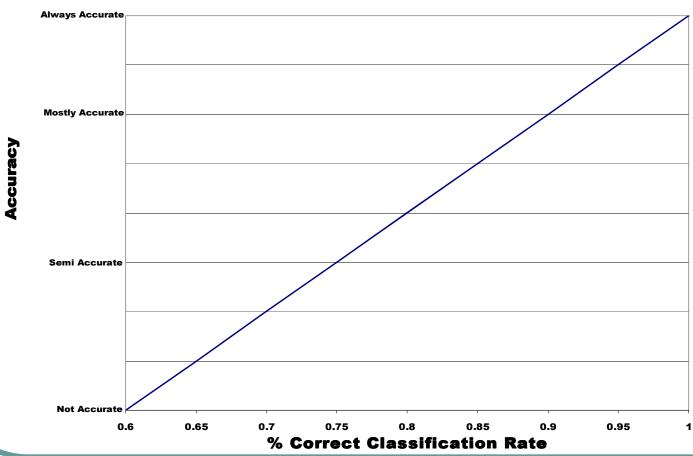
Most highly trafficked website for the wine industry

- WineBusiness Monthly
 - Industry's Leading Publication for Wineries and Growers
 - latest developments and trends in the global business of making wine, emphasis on new products
- Unified Wine and Grape Symposium (UWGS)
 - Has become the largest wine and grape show in the nation

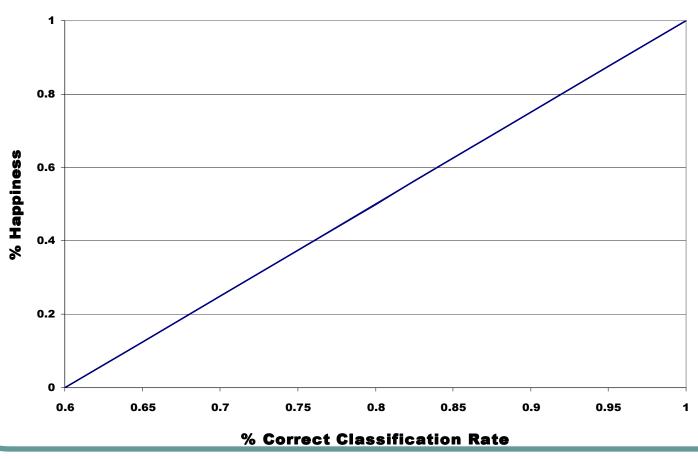
- To calculate β, we need to calculate H₁ and H₂, the consumer preference for the WI-Nose and the competition's device.
- Three device design characteristics were allowed to vary
 - Accuracy
 - Size
 - Weight

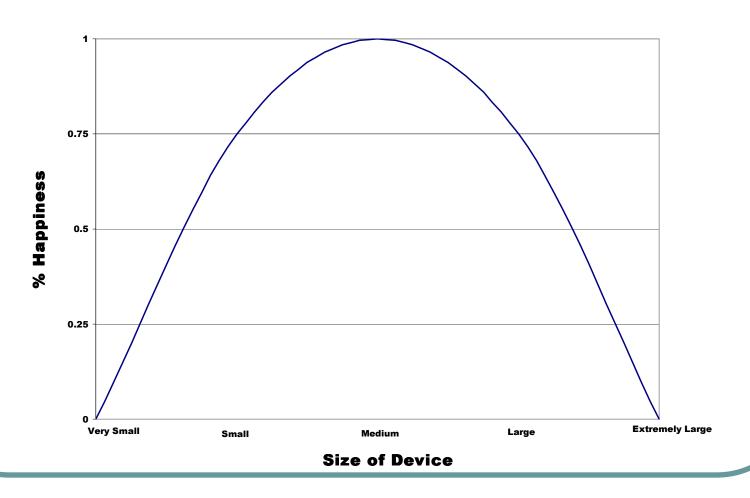


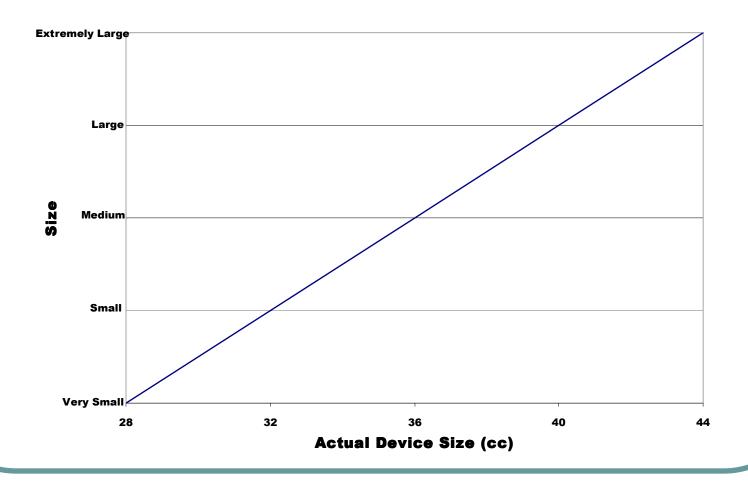
- An informal survey was performed to determine optimal consumer satisfaction based on these three device characteristics
- This resulted in the following weights:

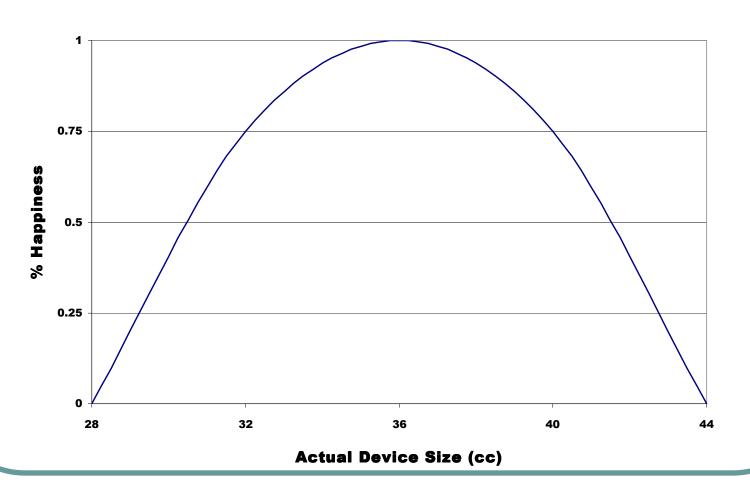

Design Characteristic	Weight
Accuracy	0.43
Size (cc)	0.23
Weight (pounds)	0.34

 Now, the happiness functions y_i's for the three design characteristics must be determined.

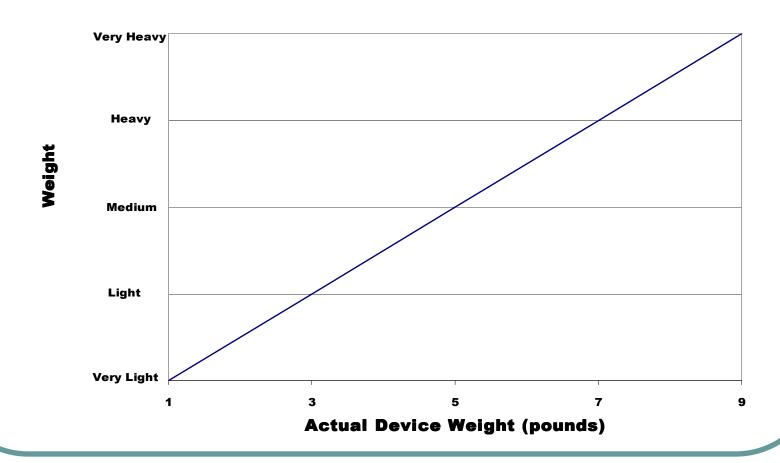

% Happiness vs Accuracy of Device

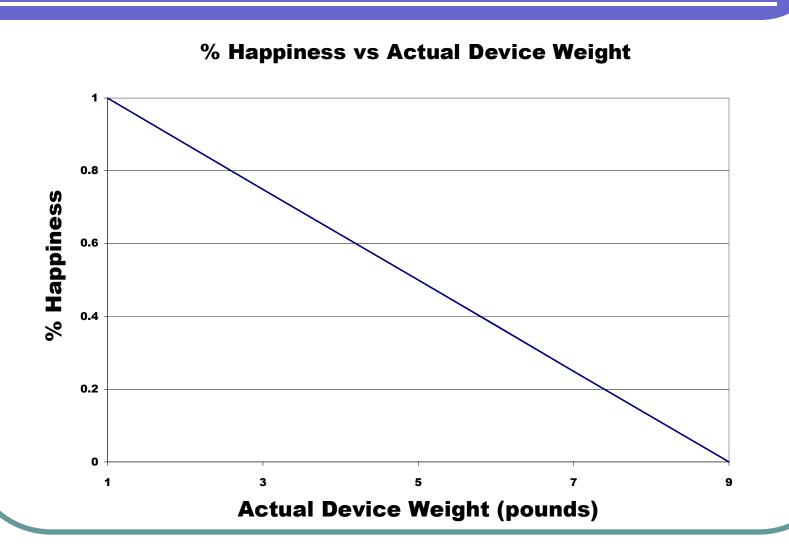












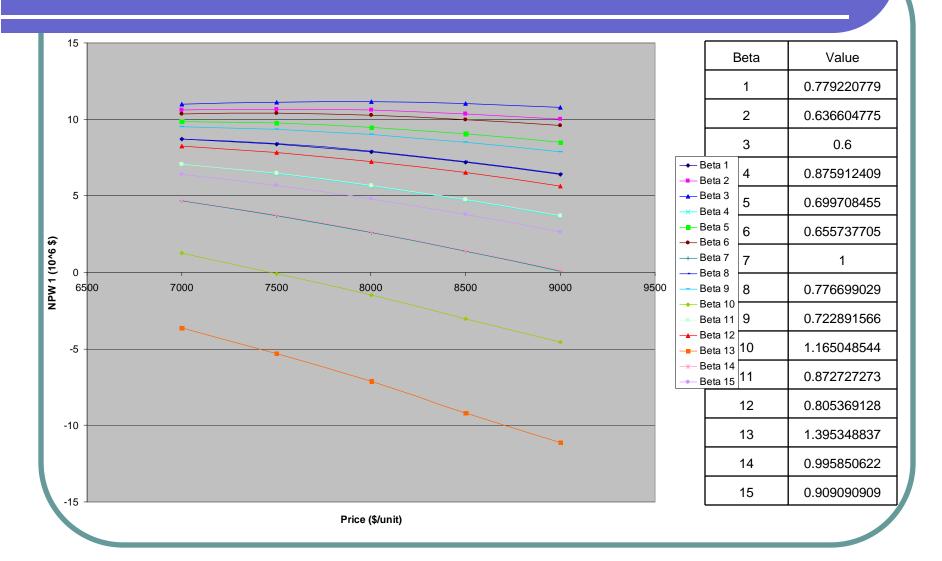
Consumer Satisfaction Model Competition – Cyranose 320

- Weight: ~ 2.5 lbs
- Dimensions: ~ 100 cc
- Currently used in diverse industries including petrochemical, chemical, food, packaging, plastics, pet food and many more.
 - Accuracy for wine fermentation stage classification: semi-accurate (75%)
- Cost: ~ \$10,000

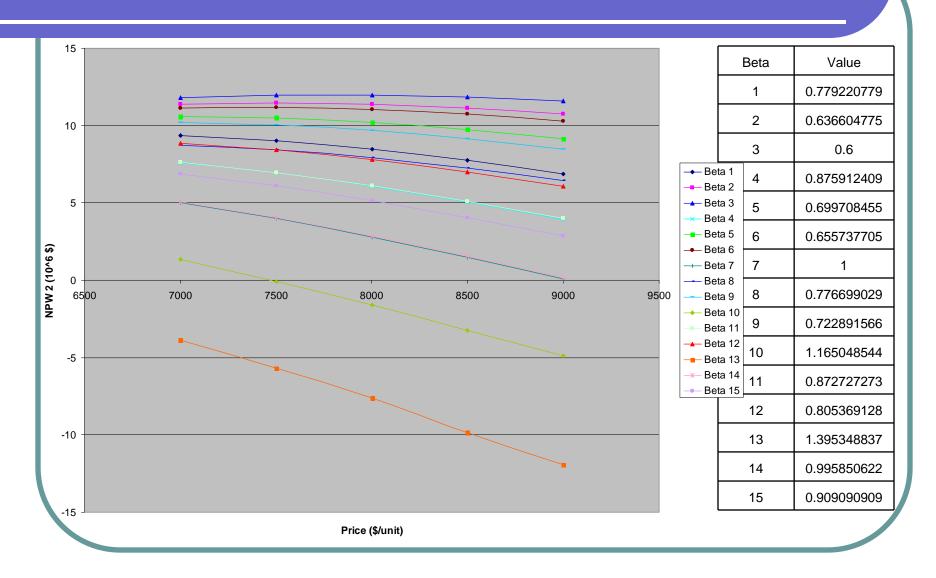
Device Characteristic	Our Device	y _i Our Device	Weights	H1	H2	Beta
Accuracy	1	1	0.43	0.77	0.6	0.779221
Size (cc)	28	0	0.23			
Weight (lbs)	1	1	0.34			

- The happiness functions were then combined with the appropriate weights to calculate H₁.
- H₂ was calculated using the given characteristics for the Cyranose 320.
- The β value was then calculated.

- This Beta value was used to determine demand for various product prices.
- This methodology was repeated for various values of the design characteristics to attain many different demands.


Price 1 (\$/unit)	Price 2 (\$/unit)	D1 B1-28,1
9000	10000	1215.83
8500		1341.86
8000		1480.93
7500		1634.94
7000		1806.44

H2	Alpha	Rho	Y
0.6	1	0.76	14500000


Consumer Satisfaction Integration

- Using these price-demand combinations, net present worth's were attained.
 - NPW 1 using Annual End-of-Year Cash Flows and Discounting
 - NPW 2 with Continuous Cash Flows and Discounting
- Accounted for the size and weight that contributed to specific β's by adjusting raw materials costs
- Ultimately graphed NPW vs. product price for each of the β's.

Consumer Satisfaction Integration

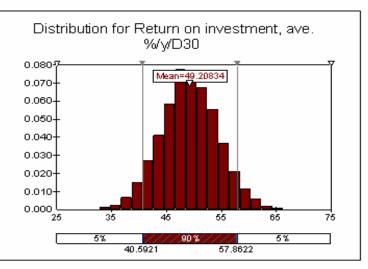
Consumer Satisfaction Integration

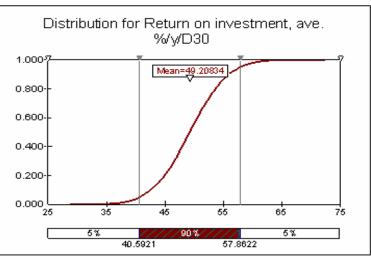
The "Best" Product Design

- Beta 3 proved to be the most profitable
 - Accuracy = 100%
 - Size = 36 cc
 - Weight = 1 pound
- Price = \$8,000
- Demand = 1651 units
- Total Capital Investment
 (TCI) = \$6.514 million
- Total Annual Value of Products = \$13.21 million

- Total Annual Cost of Raw Materials = \$2.07 million
- Return on Investment (ROI)= 49.2%
- Payback Period = 1.5 years
- Net Return = \$2.22 million
- NPW 1 = \$11.15 million
- NPW 2 = \$11.97 million

The "Best" Product Design

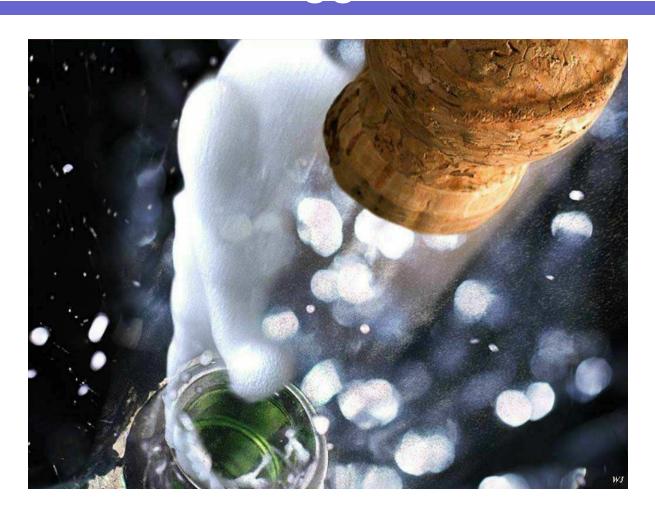

- Generally, the optimal happiness product is not the most profitable due to costs associated with its desired characteristics.
- With our device the optimal happiness product is also the most profitable.
 - The characteristics that were varied (size & weight) have very little costs associated with them (cover-\$2/unit, board-\$1.50/unit, wiring- \$2/unit).
 - This is unlike other cases in which the product's characteristics have much more significant costs associated with them.


Risk Analysis

Output				Stat	istics			
Name	Cell	Minimum	Mean	Maximum	x1	p1	x2	p2
Return on investment, ave. %/	Evaluation!D30	28.9	49.2	72.2	40.6	5%	57.9	95%

Input		Statistics						
Name	Cell	Minimum	Mean	Maximum	x1	p1	x2	p2
Annual_Raw_Materials_Cost	Materials&Labo	0.20228821	2.074001661	3.697429657	1.370520473	5%	2.767649889	95%

- 20% variability in raw material costs for device
- Normal Distribution
- 10,000 iterations
- Monte Carlo Sampling Type
- Desired Output ROI



Future Considerations/Work

- Get more 3rd stage data
- Vary number/type of sensors to get different values of accuracy
- See if a device can be designed that will give higher NPW but is not the "perfect" product
 - Sensor and software costs more significant than size and weight costs

Questions, Comments, Concerns, Suggestions?

